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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2492

A METHOD OF SOLVING THE DIRECT AND INVERSE PROBLEM OF SUPERSONIC
FLOW ALONG ARBITRARY STREAM FILAMENTS OF
REVOLUTION IN TURBOMACHINES

By Chung-Hua Wu and Eleanor L. Costilow

SUMMARY

Analysis of the supersonic flow in two tWo-dimensional high-
solidity cascades and in a partly supersonic symmetrical nozzle shows
that there is, in general, significant deviation of the mean streamline
shape from that of the mean blade line and that the effect of blade
thickness and blade curvature on the specific mass flow along the mean
streamline is to increase the specific mass flow along the mean stream-
line about 9 percent above that given by a one-dimensional estimate.
In order to determine these effects more accurately for turbomachines
of arbitrary hub and casing shapes to be used for the three-dimensional
through-flow calculation, a method is developed for the determination of
the supersonic flow along stream surfaces of revolution in turbomachines.
In this method, the shapes of the stream surfaces are arbitrary, and the
method also takes into account the distance between adjacent stream
surfaces, which varies along the flow path. Thus, the method can be
applied to turbomachines with arbitrary hub and casing shapes.

In addition to their use for direct problems, these equations can
be used to design blade elements in supersonic flow along an arbitrary
stream filament of revolution in turbomachines.

INTRODUCTION

Recent investigations of the applicability of supersonic flow in
compressors have shown the desirability of using such flow to increase
the pressure ratio per stage (references 1 and 2). For axial-flow
compressors having blades with short radial length, the over-all
performance analysis is often based on a one-dimensional approximation,
in which only average values in the channel are considered (for example,
references 3 and 4). For radially long blades and variable root or tip
radii, methods are proposed for analyzing the flow by a three-
dimensional "through-flow" calculation, which considers the axial and
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radial variations of the flow but only a mean value in the circumferen-
tial direction (references 5 and 6). The flow on the relative mean
stream surface, which divides circumferentially the mass flow passing
through the channel between two blades into two equal parts, 1s taken

to represent the mean flow through the blading. It is suggested in
reference 5 that the shape of this mean stream surface and the correction
factor b for a finite number of thick blades be obtained from the
analysis of a number of two-dimensional flows along general surfaces of
revolution starting at different inlet radii. A method was therefore
developed at the NACA Lewis laboratory to determine the flow variation on
these flow surfaces in a supersonic turbomachine. When the flow surfaces
may be approximated by cylindrical surfaces, the flow equations reduce to
the usual plane flow where the hodograph characteristics are applicable
for the flow analysis if the entrance shock is weak.

In order to illustrate the effects of blade thickness and blade
curvature and to determine, in general, the correlation between the
shapes of the mean streamline and the mean blade line, flow on the mean
streamlines was determined for two supersonic cascades and a partly
supersonic hyperbolic nozzle.

This method, in addition to its use for flow analysis of a given
blading, can be used to design blade elements along stream filaments of
revolution having arbitrary thickness variation along the flow path.

SYMBOLS

The following symbols were used in this report:

A area normal to velocity

a local speed of sound

b correction factor for finite number of thick blades
c line tangent to characteristic curve

Cp specific heat at constant pressure

h static enthalpy

I h + %WZ - %wgrz

J,K,L coefficients of partial derivatives of
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1,0 orthogonal coordinates on mean surface of revolution
M local Mach number
m mass flow between suction surface of blade and streamline,
fﬁ oW at |
o}
P blade pitch or spacing
R gas constant
r radial distance from axis of machine (fig. 1)
S entropy
T static temperature
t blade thickness in the y-direction
w resultant relative velocity
X,y rectangular coordinates for cylindricai flow with y-axis-

chosen along line joining leading edges of blade

W
B relative flow angle, tan™t éf
Y ratio of specific heats
A slope of characteristics on mean surface of revolution
v Mach angle, sin~1 %
4 distance measured from suction to pressure surface normal to
resultant velocity
e} mass density
o slope of mean surface of revolution in meridional plane,
WI‘
tan~1 —
Wy
T normal thickness of stream filament of revolution

¥ stream function
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w angular velocity of blade

Subscripts:

1 inlet condition

1,0 meridional and circumferential components

m on mean streamline

r,z components in r- and z-directions, respectively

s initial supersonic state

t at throat of nozzle

X,y components along x- and y-directions, respectively

1,2 first and second family of characteristics, respectively

METHOD

On a general surface of revolution defined by the orthogonal
coordinates 1 and @ (figs. 1(a) to 1(c)), the supersonic flow of a
fluid along a stream filament of revolution of varying normal thickness

T o= T(Z) is described by the following forms of the flow equations. By
analyzing the flow golng in and out of the element shown in figure l(d),
the continuity equation for steady flow may be expressed by

ot pW o(ToW
(tp lr) N (1o @) .

ol op

When equation (1) is expanded and the relation

is used, equation (1) becomes

d ) oh oh
'5'7" (WZTI') + gc\-o (TWCP) + ;—2 (Wzr F.L + ch 'gp) - %(er

(1)
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For adiabatic flow, the entropy along a streamline remains constant for
a nonviscous fluid; that is

Ds ds . Wp 3s
=St T 55 O

which allows the last term to be dropped from equation (2). For a
perfect gas,

h=cpT

and
a2 = (y-1) h

When this substitution is made for a2 and the expression is multiplied
1

by hT'l, the equation of continuity (2) becomes:

1 1
3 () ) @

Expressed in the coordinates 1 and @, the equation of steady motion of
a nonviscous fluid as given by equation (l4a) in reference 5 in the
circumferential direction, is

1 0W3 9 W . 1 (131 Tos\_
;W— 7 -(-§Q+ 2&)811’10—%[(;5—@-;5@)—0 (4:)

From equation (5), a stream function V¥ is defined by:

1

g—c% = r'rwth-l (5a)
1

g-‘{i = - TchhY—l (5b)

Substituting equations (5) into equation (4) results in the follow-
ing relation: '
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we\ |/ % sino 1 [13I TO3s 1 dI|1dy
<1-—z>[<‘1~9+?‘”> " +'—z'<r5‘ap ra?pﬂ* ~ 59z 30" °
(6)

If the symbols J, K, L, M, and N are used to represent the coefficients
of the partial derivatives in equation (6), it may be rewritten as

a% 2K a% L a% LA =L (7)
312 T P o1 a$ 5_ T OO

The characteristics of equation (7) are then
dcop deo
J(rﬁ> -2K< dl>+L 0 (8)

For equation (8), two real characteristics exist for supersonic
flow, the slopes along which are

N o (o8P _K_WKi-aL

17 dz - J J (9a)
A, = (r dﬁ) =X K-JL

2 " ai/s ~ J J (9p)

W
When the polar coordinates transformation that B = tan-L ﬁg and
1

Moo= Sin'l(%) = sin'l<%) = sint —2 is used, the relation of A

to the flow angle and the Mach angle is

062z
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tan (B + u) (10a)

>
—
1]

Ao = tan (B - p) (10p)

il

By the use of equations (7) and (9), the rate of change of
Y-derivatives along the characteristics with respect to 1 is obtained
(see reference 5 for procedure): Along cq 5

a a¢> A2 4 (aw) MY . N dy

EE'(ST tr O\ T T AESe = © (11a)
and along co

a [dy 7\ld<8\|f M oy N oy

ﬁ(éf)““?ﬁ BTp)+35'i' * T Se=0 (11v)

For ease in computation, it is more convenient to express equa-
tions (11) in terms of the magnitude of the resultant velocity W and
the flow angle B as follows: Substituting equations (5) in equa-
tions (11) and differentiating yields the following expression along et

aw,  aw
A - 1 & _t_ o dr
(Ag W, Ve 2 dZ+T<>\2 " @ >+(>‘z Wy - W) F

A
‘}(Nwl'chp) +-I‘§ TW'L sin o=0

Similarly, along co,

dW,  aw,
wy -w) 1 db L § ar
Oa Wy - W) g+ <}‘l 3 E#) F g W - W)

A
%(NWZ—MWCP) +%Tw1 sin 0 = 0
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With

Wcos B

=
o~
1l

=
1

Wesin B

and

i = A 5 + - - W=+ w sin o

&h_ 4 (W w2r2>_gg a2
VRV

and with the use of equations (10), equations (11) become

14w ap 2 (efrsino 1 a1 141t M sinocosp 1Ncosp - Msin B
Wy kg - ten u[ a? +aZd7.+Td_l+r()\2cosB-sinB)+3(?\2cosB-sinB) =0
(12a)
i.dﬂ+tanui‘_ﬁ_-tan2u‘”—————zrsin°+..l_£il+lgz+>\lsmccosa +1NcosB-MeinB|_g
Wdl di 82 a2 dl T dl r(A cos B -sinp] J ()\l cos B - sin P)

(12v)

along c and co, respectively.
1 2

From two points a and b (fig. 2) where the flow is known, the
tangents to the characteristics curves at these points are determined
from equations (9a) and (9b), respectively, and intersect at a point c.
By writing equation (12a) (equation along c;) at a and equation (12b)
(equation along cz) at b in finite difference form and solving simul-
taneously, the new flow values at c¢ are determined; thus, along cj

at a,

L W, - W B. - B, 0 w?r sin o,
Vo To - Ta T MaT g, P a4 - (19)
and along cp, at b,
2 .
W. - W B. - B w°r sin o
1l "c b c b 2 b
< ———— 4+ tan ——— - tan _ . . 14
Wp 1o = 1y "o le = 1y "o a? (14)

The unknowns in both eguations (13) and (14) are W, and B ; Al is
determined by the intersection of the tangents to the characteristics
from points a and b so that 1. - 1, and 1. - 1 are known in the

equation.
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For a characteristic curve that intersects the passage boundary,
such as is shown at d or e in figure 2, the situation is a little
different. 1In a direct problem with a given blade configuration, the
angle f at the intersecting boundary point is known. In the inverse
or blade-design problem, either f at the intersecting boundary point
is known from a desirable turning specified at that point or the magni-
tude of the resultant velocity W at the intersecting boundary point is
known from a specified velocity distribution on the blade. 1In all cases,
either equation (13) or (14) written for the characteristic from
d or e determines the unknown W or B at the intersecting boundary
point, whereas, as shown previously, two simultaneous equations along
intersecting characteristics are required inside the passage. In
general, after W and B are determined at a new point, other fluid
properties at that point are calculated and the characteristic directions
constructed to repeat the process progressively downstream. (For irrota-
tional inlet flow with uniform I and s and when the rotationality
introduced by the entrance shocks is neglected, I and s are uniform
throughout for adiabatic flow, and the derivatives involved in equa-
tions (12) become zero. Otherwise, the derivatives are to be evaluated
by using the values at the inlet on different streamlines, the constancy
along the streamline before and after shock, and the changes across the
shock.)

Thus a method is available elther to analyze the blade-to-blade
flow variation along a given arbitrary stream filament of revolution in
a supersonic turbomachine, or to design the blade element on a given
arbitrary stream filament of revolution for a specified turning distri-
bution or a specified velocity distribution around the blade. The con-
figuration of the stream filaments (fig. 1(a)) is taken from a
through-flow calculation (references 5 and 6). For a direct problem,
successive calculations between the through-flow calculation and the
Present calculation are necessary until the solution converges. The
through-flow calculation gives the configuration of stream filaments of
revolution, and the calculation on these stream filaments of revolution
gives the shape of the mean stream surface and the factor b used in
reference 5, which accounts for the effect of blade thickness and
curvature. In an inverse problem, the calculation is shortened if the
estimated values of the factor b wused in the through-flow calculation
for a desirable blade-thickness distribution results in a blade dimension
which has a thickness distribution close enough to the desirable one.

In order to give a general idea of the order of magnitude of this
factor b for the effect of the blade thickness and curvature on the
mean flow and the closeness of the shape of the mean stream surface to
the blade mean surface, an analysis is made for the simpler case of
cylindrical flow utilizing available data for two two-dimensional
high-solidity cascade recently investigated by Liccini at the NACA
Langley laboratory (unpublished data) and for a partly supersonic nozzle
investigated by Emmons (reference 7).
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ANATYSIS OF FLOW IN TWO SUPERSONIC CASCADES AND
ONE PARTLY SUPERSONIC NOZZLE .

The shapes of the two high-solidity 90° turning-angle cascades are
shown in figure 3. Each cascade has an inlet Mach number of 1.78 and
a 10° wedge angle at the leading edge. (The blade is so designed that
the leading-edge shock is cancelled after the first reflection.) The
shape of the partly supersonic nozzle is shown in figure 4. (Because
the nozzle is symmetrical, only half of it is shown.)

In the case of the symmetrical nozzle, the center line is the mean
streamline. For the two 90° cascades, the mean streamline (the one
which divides the mass flow in the channel into two equal parts) has to
be established from the data given on the characteristic net of the
blade design. The mass flow m at any point in the channel is deter-
mined by integrating across the channel the local specific mass flow

4
given by the characteristic net; thus, m =\[ﬂ oW af. The values of

the local specific masg flow can be obtained gy using the table given in
reference 8 or similar tables. The shape of the mean streamline is to
be compared with that of the mean blade line, which is obtained by
taking the mean of the blade coordinates in the pitch direction.

The value of the specific mass flow W or Wy 1s then obtained
along the mean streamline downstream of its intersection with the
leading-edge shock. The discontinuity in the flow curves at the point
where the mean streamline intersects the "reflection" is smoothed out
in order to emphasize the general trend. These values are to be com-
pared with the corresponding variation in the channel width (or area)
pe;pendicular to W or Wy, in order to determine if there is any corre-
lation between the variations in specific mass flow on the mean stream-
line and the corresponding area.

In the case of the nozzle, the flow variation on the mean stream-
line is obtained from the Mach number given in reference 7. The vari-
ation in specific mass flow is compared with the channel-area ratio.

The results obtained in the two 90° turning passages are given in
figures 3 and 5 to 9. The results obtained with the symmetrical nozzle
are shown in figures 4, 10, and 11.

In figures 3(a) and 3(b), the mean streamline is compared with the
mean channel line. In figure 3(a), where the cascade is of the higher
solidity and has thinner blades, the shape of the mean streamline
closely approximated that of the mean camber line; however, in the
second cascade (fig. 3(b)), which has a lower solidity and thicker
blades, the mean streamline deviates more from the mean blade line.

2250
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The specific mass flow on the mean streamline based on the resultant
velocity as shown in figure 5 indicates clearly that the effect of blade
thickness and curvature on the through flow is to increase, in both
cases investigated, the specific mass flow along the mean streamline a
chordwise average of 9 percent over that given by the area reduction
(due to blade thickness) based on a one-dimensional calculation. If a
comparison of specific mass flow in the axial direction with variation
of channel width in the y-direction is made (fig. 6), as is done in
reference 9 for subsonic flow, corresponding trends are obtained, and
the increase in specific mass flow again averages about 9 percent
chordwise over the area ratio. This increase is more than two times the
increase obtained in reference 9.

The variations of axial and tangential velocity components on the
mean streamline are shown in figures 7 and 8, respectively. The vari-
ations of the velocity across the channel in the two cascades at the
stations indicated on figure 3 are shown in figure 9.

The result obtained in the nozzle problem is shown in figures 10
and 11. The results shown in figure 10 correspond to the nozzle shown
in figure 15 of reference 7, which includes a small portion of super-
sonic flow in the divergent portion of the nozzle; whereas figure 11
corresponds to figure 16 of reference 7, with supersonic flow extending
throughout the divergent portion and the Mach number increasing '
beyond 2. For the subsonic flow in the convergent portion, the local
specific mass flow and area are normalized by the values at the throat;
for the flow in the divergent portion (partly supersonic, fig. 8, and
purely supersonic, fig. 9), the local specific mass flow and area are
normalized with respect to the conditions where the flow is initially
supersonic. The comparison between the specific mass flow and area
ratio is similar to the previous result. The increase in the specific
mass flow on the mean streamline is entirely due to the area reduction
(no turning) and is about 8 percent higher than a one-dimensional
correction.

The results obtained in these analyses give some idea regarding the
closeness between the shape of the blade mean line and mean streamline
and of the order of magnitude of the blade thickness and curvature
effect for through-flow calculations. For an approximate through-flow
solution of a similar blading, these results may be directly applied.
For different types of blading, similar analyses can be made for the
two-dimensional flow on cylindrical surfaces or surfaces of revolution,
which are formed by fluid particles initially lying on circular arcs at
a number of radii upstream of the machine by using the general relations
derived herein. The mean streamline obtained at the different radii can
be Joined together to form the mean stream surface. The ratio of
(pWy )y to (pW'X):.L obtained in these calculations can be taken as the

thickness correction factor b din the relations between stream function
and velocities (equation (111) of reference 5).
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More knowledge of this kind for a number of typical bladings will
be very useful in the design of these bladings. From this knowledge and
a certain blade-thickness distribution, which is desired from the blade
strength and other considerations, a good estimate of the factor b can
be made and used in the through-flow calculation. From this solution,
the blade section on a number of surfaces of revolution can be designed
by the method given in the report.

SUMMARY OF RESULTS

Analysis of the supersonic flow in two two-dimensional 90° turning
passages of high solidity and in a partly supersonic symmetrical nozzle
shows that there is, in general, significant deviation of the mean
streamline shape from that of the mean blade line and that the effect of
blade thickness and blade curvature on the specific mass flow along the
mean streamline is to increase the specific mass flow along the mean
streamline about 9 percent above that given by a one-dimensional
estimate. In order to determine these effects more accurately for
turbomachines of arbitrary hub and casing shapes to be used for the
three-dimensional through-flow calculations, a method is developed for
the determination of the supersonic flow along stream surfaces of revo-
lution in turbomachines. In this method the shapes of the stream
surfaces are arbitrary, and the method also takes into account the
distance between adjacent stream surfaces, which distance varies along
the flow path. Thus, the method can be applied to turbomachines with
arbitrary hub and casing shapes.

In addition to their use for direct problems, these equations can
be used to design blade elements in supersonic flow along an arbitrary
stream filament of revolution in turbomachines.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 13, 1951
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